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I. Phys. A Math. e n .  25 (1992) 4767-4786. Printed in the UK 

Structural phase transitions with random strains 

H S T o h  
Department of Medical Physia and Biophysics, University of Nijmegen, GeeR 
Crootepkin Nmrd 21, 652582 Nijmegen, I h e  Netherlands 

Reasived 24 April 1991 

Abslraet. We present a physically realizable random field model in the form of dilute 
crystals undergoing structural phase transitions, with the impurities generating a random 
strain field. The mode softening that a r u r s  at the transition is anisotropic We show 
how this anisotropic mode softening reduces the upper aitical dimension from 6 to 
4. We petform an f-erpansion at three dimensions about the upper uitical dimension, 
from which we obtain static critical exponents which, to 0 (f), are equal to thme 
corresponding to the pure three-dimensional Ising model. I h e  a o s m e r  behanour is 
described. Elastic long-range forces reduce the upper critical roughening dimension from 
5 to 3. We find that even at the upper aitical roughening dimension of 3, domain wall 
roughness is not eliminated. ?%is is due to anisotropic shape effects in the domain walls, 
induced by the anisotropic long-range forces. Ihis is an instanas of how the mncept of 
the upper critical roughening dimension is not vety useful for understanding domain wall 
roughness and dynamics for models with anisotropic interactions. Given the mnnection 
between domain wall roughness and dynamics in random field systems, for our model at 

models remain, though reduced. 
thrre dimcw3b!!a. mrk%!.hi!i$ ER4 h2g r.l...tbz the2 %%misted -!h :,?Om 5e!d 

1. Introduction 

Random field models have long posed theoretical difficulties with both their static 
and dynamic critical properties [l-51. So far attention has mostly been focused 
on the random field models with short-range interactions. One exception is the 
random field king model with long-range dipolar interactions, studied by authors l i e  
Nattermann [a]. This work studies structural phase transitions with random strains 
as an example of a random field model with long-range forces. Most experiments on 
random field models have been done on dilute antiferromagnets in a uniform field 
(DmFj. Reiativeiy few have been done on our modei, i.e. impure crystais. 

Structural phase transitions with random strains are a realization of a random 
field model, arising from different physical effects, e.g. electronic band structure, 
ferroelectric fluctuations, ferroelastic mode softening and the Jahn-Teller effect. The 
order parameter 4 is the strain tensor. In some special cases the symmetry is such 
that 4 collapses into a one-component vector, and only quadratic b2 and quartic 44 
terms are allowed in the Hamiltonian of the pure system. We then get an Ising model 
with a second-order phase transition. The important difference is that structural 
phase transitions undergo mode softening along restricted directions in momentum 
k-space dictated by the above-mentioned elastic constant and lattice symmetries. 
This translates into anisotropic direction-dependent quadratic terms in k-space in the 
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Hamiltonian, whereas the random field model with short-range nearest-neighbour 
interactions (short range RFTM) contains only isotropic terms. 

Nattermann [6] investigated the role of long-range dipolar forces in random field 
systems, its effects on the static equilibrium properties and the growth of metastable 
domains. For the random field king model (RFIM), dipolar forces lower the upper 
critical dimension by 1 but leave the lower critical dimension unaffected. The static 
critical exponents are altered. These changes can be viewed in terms of the bare 
propagator of a pure Ising model with dipolar interactions G(g) = ( T -  To + q2 + 
g ( r ~ ~ / q ) ~ ] - ' .  Dipolar forces induce the anisotropic g(q, /q) *  term which alters the 
integrals in a perturbation treatment of static and interface properties. Following 
the approach of Nattermann [6], we study an RFIM with a bare propagator of the 
corresponding pure model with another type of anisotropy. 

Random fields move the system to a disordered universality class, while long- 
range forces move the system towards the pure mean-field class. In our model, how 
do the competing tendencies of random fields and long-range forces interact? We 
will address this question in the static and dynamical aspects. Is our model more 
like a random field model or a pure model? One motivation for our work was to 
investigate to what extent long-range forces reduce the problem that have made 
random field models intractable to analysis and a source of controversy. On the 
static front, we investigated how the long-range forces modified the upper critical 
dimension, the critical exponents and the crossover behaviour. On the dynamic front, 
we investigated how the long-range forces modified the upper critical roughening 
dimension, the domain wall roughness and the dynamics. A major difference between 
random field models and pure models lies in the dynamical behaviour. Random field 
models exhibit much longer critical slowing down times than pure models. This is 
due to metastable effects absent in pure models. One major motivation for this work 
is to investigate to what extent our long-range forces reduce the slowing down times 
and metastability. 

One aim of this paper is to show how anisotropic mode softening tends to lower 
the upper critical dimension of the system. Random fields raise the upper critical 
dimension [9, lo], while anisotropy lowers it [7]. As will be shown later in this paper, 
we rigorously demonstrate that the upper critical dimension is 4, which is lower by 2 
than the short-range R F ~ M  upper critical dimension, and equal to the pure short-range 
king model upper critical dimension. Expanding about this upper critical dimension, 
using renormalization group (RG) techniques, this paper will extract static critical 
exponents for the dimension of physical interest (d = 3) n spite of uncertainties 
as to the validity of the e-expansion in RF systems. The case for and against the 
c-expansion in RF systems will be elaborated later in this paper. 

inlur,-",~r nrlm all" uryuran A r I 1 " X  1 1 l l V ' c  OYb... '..p "Yp.1 *..U- U.YII.WI"II0 \" 

and 5 respectively) that no rigorous analytic derivations of static critical exponents 
have been performed at dimensions of physical interest (d = 2,3) and also no 
experimental studies of behaviour close to d, is possible. Monte Carlo simulations 
have been done of short-range RFIM at high dimensions close to d,, i.e. at d = 4,5, 
by Houghton et a1 [12]. Numerical results of exponents at three dimensions for the 
short-range REM were given by 0giels)ci [Sb]. Here we give a physically realizable case 
of a random field model which at three dimensions is just one dimension below d,. 
Capacitance response and ultrasonic measurements have been done on one such 
system, Dy(As,V,-,)O,, by Graham, 'bylor and co-workers [13]. 

PI.--+ -"-I" n-.c n-rl AL-1 -e  D_.I h n z r a  ,..rh hinh ..*mar r A G m l  A i w a m & n m e  IL 
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2. Hamiltonian 

In the structural phase transitions this paper is investigating, the primary order 
parameter 4 is a homogenous deformation of the crystal structure. The phase tran- 
sition occu~s through the 'softening' of a linear combination of elastic constants c,, 
as T 4 Tc, e.g. 

lim (cI1 - cI2) = 0 .  
T-T. 

The physical origins of this elastic softening is varied. They could be ferroelastic 
fluctuations, Jahn-Teller effects or electronic band structure. 

Cowley [7] gives the required crystal symmetries and properties that will produce 
the pure part of our Hamiltonian. Below is a list of the lattice symmetries of the 
high-temperature phase of the pure parent crystal before the addition of impurities. 
This list is gleaned from Cowley 171. 

(i) Rtragonal 4mm, $2m, 422, 4/mmm, with irreducible representation E ,  or 

(ii) Orthorhombic classes with irreducible representations E , ,  E,, B3. 
In addition there is a group of ferroelectric crystals which will map onto the Ising 

model and undergo a secondader transition. The reader is referred to Cowley 171. 
The addition of impurities generates random strain fields, which when coupled to 

the order parameter 4 creates the random field contribution to the Hamiltonian. 
For crystals with the symmetry for T > T, given above, with the addition of 

impurities, the critical behaviour can be described by the Hamiltonian 

H = - J [ a ( ~ - ~ , ) + v c o s 2 ' p s i n ' ' p s i n 2 ~ t g c o s ' ~ + e q ' 1 4 ( q ) 4 ( - q )  

4 (e.g. WW). 

where Z means the ensemble average of x. The origin of the 'p angle will depend 
on the representation and symmetry class. 4(q) is the order parameter, and h ( - q )  
is the random field. We are in momentum q-space. 
Thus we have the Hamiltonian for a random field model with one major dif- 

ference: in addition to short-range isotropic nearest-neighbour interactions we get 
angular terms that depend on 8 and 1p in momentum space. In real space such 
t e r m  are long-range forces. For instance, g cos2 8 is the dipolar interaction. Natter- 
mann [14] has dealt with this dipolar contribution in his paper. 



4770 H S Toh 

3. Upper critical dimension 

We could either adopt the anisotropic scaling as presented by Birgeneau [Ha] or the 
isotropic scaling which Aharony [15b] applied to the pure dipolar problem. Both are 
mutually and mathematically consistent. We adopt anisotropic scaling. Figures l(a) 
and l(b) illustrate the concepe behind anisotropic scaling. The crystals to which 
our work applies have either tetragonal or orthorhombic symmetry in the pure phase 
above T,. Note how the mode softening in figures l(a) and l(b) reflects this symme- 
try. We have chosen without loss of generality for the mode softening to occur along 
[110] and Il iO].  This anisotropy of domain shape has been observed by experimen- 
talists [6]. Thus, anisotropic scaling appeals to physical intuition. 

la1 A k, Ibl t '  

Mode- softeningin h - spare 

Correlated regions in real space 

Flguro 1. (a) Mode softening in momentum space. (a) Correlated regions in real 
space. 

Under anisotropic scaling, we require g and v to be constant. 

9' = 9 

U' = v 

I t  is important to note that there are no graphical perturbation corrections to the 
above RG iterations for g and D. This is because g and U are coefficients of angular 
terms ( q z / q ) z ,  q 2 q i / [ q 2 ( q z  + q i ) ] .  In any graphical term in the perturbation 
expansion, the outer shell of the Brillouin zone is integrated over as the momentum 

will yield a value dominated by the magnitude of the external momentum vector, but 
independent of its direction. Thus, no graphs will contain any external angular terms 
and the RG iteration for angular terms do not contain graphs. The lack of graphical 
contribution is also found and explained in Aharony's [lsb] treatment of the pure 
dipolar problem. In our notation q = ( q l ,  q, , q, , qz ); q1 is a ( d  - 3)dimensional 
vector. 

Looking at figure l(a), we see that there is a choice of q, or q, in the anisotropic 
scaling. This reflects the fourfold symmetry about x .  For non-zero U, a breaking of 
symmetry between the o and y directions is inevitable whichever choice of scaling 
is taken. Without loss of generality, we choose q l ,  q, to scale as (-', q,, q, as 

me+- raerslnA ..,Aar DP_ :tnmtinn I, intDnr2tinn n v c ~  tho nlltPI chpll the sno,,llr term= 6 I W  IIUMII" ".."IL S." .,IL"L.".I. '.'L"b.".Y.b".". I.."Y, ... " .-_-I 



Smtctwal phase transitions wirh random strains 4771 

q, = q: b-( . (12) 

To retain the fluctuation term J q 2 @ d q ,  we require e to be constant under 
scaling. Using the above scaling rules for q,  d q ,  e, the requirement that g, z) be 
constant implies 

(13) 
7 
2 

c = 2 - - - .  

The inclusion of 1) in the anisotropic mode softening means that thermal fluctua- 
tions, if relevant, will affect the shape and volume of the domains and mode softening. 
In our notation E means the ensemble average of I, (x) means the thermal average 
of 2. 

We now introduce random field scaling. We adopt the scaling rules of Bray [lo]. 
Like Bray, we have three independent critical exponents, including a new exponent T. 
7 j  is a new independent exponent that takes into account random field (RF) fluctua- 
tions. Fisher [ll] (1986) and Viain [20] have also used three independent exponents 
in their scaling approach to the random field problem. By contrast, pure problem 
have only two. Figures 2 and 3 illustrate the concepts of random field fixed point, 
universality class and scaling. 

d 

F l p r e  2. RG flow and phase diagram for random field models. 

Random- field 
fixedpoint 

Thermal UnivPrSal 
dais IA = 01 

Flpre 3. Random field and thermal universality classes 
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Following Bray [IO], we obtain the scaling relation for the mean square RF 
strength A: 

[ I +  &WPW (14) 
l#l = C Q  . (15) 

A = b2q-TA' 

From all the scaling relations stated above and scale invariance, 

(16) 
(17) 

c =  b d/2+3-q/2-T/ZC~ 

T = b2tq-VT' 

By comparison, c = bdl2+' for pure short-range systems, e = bd/z+z-T/2  for the 
short-range RFIM (cf Bray [lo]). 

T goes to 0 under scaling and we have a zero r e m p e "  random field fiied 
point (see figure 3). 1/T appears in the Bolkmann weight e x p ( H / T ) ,  so T is a 
dangerously irrelevant parameter. In our scaling formalism, we must always take into 
account l /T and T, wherever they appear. 

At the upper critical dimension d,, all fluctuations are irrelevant, in which case 
11 = 7 = 0. For d 2 d,,  using the scaling rules for c and T, 

We see that uo is irrelevant above d = 4. Hence the upper critical dimension 

dc = 4 .  (19) 

Cowley [7] showed that anisotropy for p w e  systems reduces d ,  = 4 to d, = 2. 
Random fields increase d ,  = 4 to d, = 6 for the shot?-range RFIM [lo]. Using 
scaling arguments, we have rigorously shown that for d,, dimensional reduction strictly 
applies, i.e. d,  = 4 + 2 - 2 = 4. 

4. Critical Exponents 

In this section we proceed in three stages. First, we state the theoretical uncertainties 
concerning the applicability of the RG to RF models. Next, we proceed to perform 
an RG e-expansion in spite of such uncertainties. Finally, we state the reasons for 

dimensions. 
According to Fisher [ l l ]  and Villain [ZO], random fields induce a large number 

of local minima, and there are problems assigning the correct Bolkmann weights to 
them. Conventional RG techniques assume only one minimum for the free energy. 
Fisher [ll] conjectures that this problem of infinitely many minima will render the 
R C ~  invalid even at  high dimensions close to d,. 

In spite of this lack of certainty, we will proceed to Set up RG equations for our 
model and perform an e-expansion to 0 (c) at E = 1, where d = 3. We use three 
independent exponents, adopting the approach of Bray [lo]. For pure systems, we 
need determine only two independent exponents. We now set up the RG perturbation 

4.- -* "....:c:f:&. ....A --.: ..̂ . :-_- ..f ^^ ..,. ^ ,̂"..,̂ c.r̂  "..-,:-A *- _.._ ...,.Ao, ^+ 
LIIG ~ 1 d U l U U I L y  U 1 U  UlVUVdLlUlW U I  dII -U MLLUIaIIuII ayylLCu L U  U U L  U l W C l  a r  L l l l C r  
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expansions for the various parameters, using aU the previous scaling relations listed 
in section 3. We define 

ro a(T - T,) . (20) 
The RO equations for our random field model are as follows: 

9' = 9 
U' = v 

Figures 4 and 5 illustrate the Feynman graphs involved in our RG calculations. 
We now perform a one-loop €-expansion to 0 ( E ) .  At the one-loop level 

THERMAL GRAPHS 

R F GRAPHS 

q l  91 

ti U 
Flyre  4 Thermal graphs and ran- 
dom field paphr. We have included 
T because T 3 0 and so 1/T is 
relevant. 
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Ensemble 
a Y e I a g e d TREES 

d 
Notation A stands for 

Figure 5. (a) Random field tree paphs are ensemble-averaged lo form paphs with 
random field fluctuations. In this diapam A atan& for A l p .  (a) Mathematical 
expressions for one-loop thermal and random field ensemble-averaged paphs. 

At three dimensions, i.e. one dimension below d,, two-loop graphs are numerically 
smaller than one-loop graphs, so v,q should be very small at d = 3, and can be 
neglected without serious error. We linearize near the fixed point. At 3 = d, - 1 
dimensions, we obtain 

v = 0.6 

y sz 2v = 1.2.  

We have predicted a value of 1.2 for 7, at the one-loop approximation. Ib 0 (e),  
the critical exponen!s for our model are equal to those of the pure short-range king 
model, with both models at three dimensions. Thus we call our fixed point the quasi- 
Ising fixed point. Of course, by inspecting the graphs, it can be seen that to higher 
orders in e, this equivalence of the two universality classes should break down, due to 
the presence of the extra exponent which is non-zero at 0 ( e a ) .  For d well below 
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d,, q, 7 can be very large, as testified by numerical work [Sa, b]. For the short-range 
RFIM, Ogiekki’s numerical work [8b] predicts a value of 1.0 for V. 

We now explain why we consider the results of our +expansion plausible, even 
though not yet rigorously justified. 

(i) Following Bray [lo], our calculations account for RF fluctuations by including 
an extra independent exponent 7. 

(ii) We are working close to the upper critical dimension. At three dimensions, 
only RF graphs will be relevant (see figures 5(a) and 5(b)). Aharony [9] and Vil- 
lain [U)] also advanced similar plausibility arguments. 

(iii) There is numerical evidence in support of our conjecture that an €-expansion 
for random field models would be ‘safe’ at high enough dimensions. Monte Carlo 
simulations of the short-range RFIM (12) at d = 5, which is one dimension below the 
upper critical dimension of 6, have given static exponents numerically similar to that 
predicted by RG techniques. It is easy to show that applying Bray’s calculation [lo] 
to the short-range RFIM will yield critical exponents equal to ours to 0 (E). 

(iv) For the short-range RFIM, at any dimension below d,, the static critical expo- 
nents must satisfy certain inequalities [21]. These inequalities must also be satisfied by 
our model, with an important modification: the dimension d is replaced by (d+2-17), 
because the short-range RFIM has a correlated domain volume of cd whereas ours has 
a domain volume of cdt2-n .  Villain [20] has also developed a group of inequalities 
to bound the critical exponents with. The set of inequalities [21], in our notation, is 
as follows: 

7 2 0  (32) 

d + 2 - q  (SchwartzSoffer inequality) (33) 
&j-? l -2+  U d 
12 7-7-d-2 t 7. (34) 

For our model, at three dimensions, in the one-loop approximation, 17 = ii = 0, 
y = 1.2, U = 0.6, p = 0.3. We can see that with these values the above inequalities 
are indeed satisfied. 

We compare our results to those obtained experimentally by Graham, Ziylor and 
co-workers [13]. They studied the mixed Jahn-Rller system Dy(As,V,-,)O,. We 
treat DyVO, as the pure parent and As as the impurity. Then according to Cowley [7], 
DyVO,, with symmetry 4/mmm, B, mode and acoustic modes along [llO] or [liO], 
will have mode softening given by 

Here the azimuthal angle ’p is defined as zero along the [llO] direction. This, 
with As supplying the random field, will give the required Hamiltonian. Graham et 
al [13] measured the y to be 1.25 crossing over to 1.6 as ( T  - T,) tends to zero. In a 
later work [13] (1991) they measured 7 = 1.79 f 0.07. This is much higher than our 
predicted value, which they cite. Graham et al 1131 (1991) also measured the pure 
parent crystal DyVO,. They found y to have a non-critical value of 1.15, higher than 
the mean-field value of 1. In their paper [13] (1991). they state that DyVO, is not a 
good mean-field system. Cowley (71 predicted for DyVO, that the long-range forces 
would be strong enough to induce a crossover to the mean-field regime, with an 



4716 H S Toh 

upper critical dimension of 2. A crucial assumption underlying Cowley’s theoretical 
treatment [7] and our work (which is derived from Cowley [7]) is that the long-range 
forces are strong enough to induce a crowver that can be experimentally observed. 
Perhaps Dy(As,V,-,)O, is not a good candidate for our theoretical model, even 
though it fits our symmetry requirements. 

We do not assert that our predicted values of critical exponents are correct, or that 
those of Graham d a1 [13] are wrong. The motivation for stating the results of our e- 
expansion at three dimensions, in spite of its lack of rigorous theoretical justification, 
is as follows. Ours is a random field model with an upper critical dimension of 4. At 
the experimentally interesting dimension of 3, it is easy to perform an €-expansion. 
The short-range RFIM and the dipolar RFIM of Nattermann [a] have upper critical 
dimensions of 6 and 5 respectively, which makes an €-expansion at three dimensions 
problematic. We wish to see if experiments and computer simulations can verify or 
contradict our RG predictions. If careful computer simulations and experiments can 
confirm our results, then the validity of an €-expansion for a random field model 
will be made even more plausible. If they prove otherwise, then the RG will be 
conclusively shown to be invalid for random field models. Either way, a definite 
advance in our understanding of random field systems will have been made. 

5. Crossover behaviour 

The short-range RFIM has its crossover behaviour described by two fixed points- 
pure Ising and short-range RFIM. The crossover behaviour of our random field model 
invoives more fied points and is correspondingly more complicated. The crossover 
behaviour will consist of competition amongst the relative magnitudes of g, v and the 
mean-square random field strength. g and v are determined by elastic constants of the 
pure system [7]. The random field strength will be determined by the concentration 
of impurities and the strain coupled to the order parameter. For T < Tc, when the 
random field strength and g and v are negligible compared to (T, - T), mean-field 
behaviour will dominate because both thermal and RF fluctuations are negligible. If 
the mean-square random field strength is much weaker than g and U, g and v will 
suppress thermal fluctuations and mean-field theory will still hold up to temperatures 
close to T,. Very close to Tc, however, random fields will induce a crossover to the 
quasi-king fixed point, where the static exponents will be very close to those of the 
three-dimensional short-range pure Ising model. 

If the mean-square random field strength is much larger than g and v,  as the 
temperature approaches T,. there will first be a crossover to 3D short-range RFIM 
behaviour. When (T, - T) is small enough so that the effects of the anisotropy 
terms g and v are being felt, there will be competition between g and U. Eventually, 
the static exponents close to those of the 3D pure short-range king model should be 
measured. The following elaboration should make this clear. 

Any thermodynamic quantity W can be written as 

where w is the short-range 3~ RFIM exponent of W ,  and 1 = T - T,. d, li, are 
the crossover exponents of g. v respectively. When 1 < gild we get a crossover to 
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a new universality class involving g. When t 6 d / +  we get a crossover to a new 
universality class involving I. Section 3 shows that g, 2) both scale like t2-" under 
i.m-opic scaling. Thus we can also write 

w = t w n ( t 2 - " , p I ) .  (36) 

In momentum space, the thermodynamic quantity will have the scaling form 

C(p,) reflects the invariance under the interchange of q, and qy ,  given the 

There are three possible w e s :  
(i) g ,., v:  there is a direct crossover from the short-range three-dimensional RF'IM 

tetragonal symmetry between the I and y directions (see figures l(u) and I@)). 

to the quasi-king fixed point, i.e. 

6 = li, = (2 - 'I)Va (38) 

where vs is the critical exponent for the correlation length E for the threedimensional 

(ii) g B v :  the effects of g are felt first, before I. There is first an intermediate 
crossover to the 3D R F ~ M  with dipolar interactions with the upper critical dimension 
of 5. This model has been studied by Nattermann [14]. In this case 

short-range RFIM. 

6 = (2 - o h .  . (39) 

Then there is the crossover to the quasi-king fvred point where I at last becomes 
noticeable. In this w e  

~ = (2 - d u d  ' (40) 

qd, ud are the critical exponents of the dipolar RFIM. ud is the critical exponent 

(iii) I > g: similiar to case (ii), except that g and U interchange. 
of the correlation length in particular. Now 6 # li,! 

R l n n t a  P l r l r r  A< tha thraa-Aimnnrinnsl r l i 1 a . t ~  nntifnirnminnnt in n 
lNUlllr -,,U ~II.I".P,.",.Y "l L l l l  L .Yl I -YYI I I .YIY. IYI  Y..Y..d . " L Y L I . . Y Y . Y ~ " .  "1 U 

uniform field 181, which maps on to the three-dimensional short-range RRM, have 
found 

17 = 0.5 f 0.1 

3 (2 - q)ua = 1.95 f 0.30. 

U, = 1.3 & 0.3 

Numerical results by Ogielski [Sa] have found for the threedimensional short- 
range RRM 

4 = -0.9 v, = 1.0 0 = 0.05. 
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We have found no available data for the dipolar RFIM exponents. 
Using the above Monte Carlo and numerical values, we can determine the 

crossover exponents for case (i), 
For case (i), the crossover exponents q5 = li, = 1.95 f 0.30. For case (ii), we can 

only determine one exponent q5 = 1.95f0.30. li, depends on dipolar exponents which 
we have not been able to find, so li, is undecided for case (ii). For case (iii), since 
g and ZI interchange, 4 and li, correspondingly interchange and so 1L = 1.95 f 0.30 
and q5 is undecided. 

For the crossover described above to be observable, the elastic forces represented 
by g, U, must be strong compared to the random field represented by A. 

6. Dynamics 

In this section, we focus on the dynamic properties of structural phase transitions with 
random strains. As this paper will show, there is an intimate connection amongst the 
domain waU roughness, upper critical roughening dimension, slowing down time and 
relaxation mechanism of our model. Random field models have long posed theoretical 
difficulties with their dynamic properties [l-51. A major difference between random 
field (RF) models and pure models lies in the dynamical behaviour. RF models 
experience much longer critical slowing down times than the corresponding pure 
models. This is due to the presence of metastable domains in RF models, absent in 
pure systems. Several authors [l-51 have postulated that random fields roughen the 
domain walls and pin them, hence slowing down drastically the growth and shrinkages 
of domains. 

Nattermann [6] investigated the role of long-range dipolar forces in random field 
systems and their effects on the growth of non-equilibrium metastable domains. The 
interfacial roughness exponent of the domain walls is altered. Similar to Natter- 
mann [6], we will show that long-range forces reduce the upper critical roughening 
dimension. Beyond that, we will also investigate the shape of our domains caused by 
the anisotropy of our forces, and will find that shape effects have an important role 
in the dynamics of our model. 

6.1. Interfacial roughening 
For a random field model with domains, whether the domain walls are smooth or 
rough depends on the competition between the domain wall ‘surface tension’ and the 
energy to be gained from random fields [2,20]. Random fields encourage roughening 
of domain walls [20]. It has been postulated that the roughness of domain walls are 
responsible for the very long relaxation time involved in the critical slowing down 
[l-51. The upper critical roughening dimension d, is defined as follows. For d > d,, 
the wall is smooth on the length scale of the model, i.e. the roughness divided by 
the length scale of the model goes to zero as this length scale tends to infinity. 
For d < d,, a roughening transition of domain walls occurs at some temperature 
TR < T,. TR is defined as the roughening temperature. 

To obtain d, we perform a calculation similar to Nattermann [6], to which the 
reader is referred for the details. However, we will subsequently show that d, is not 
sufficient to determine whether the domain walls of our model are rough or smooth. 
To determine this requires an understanding of anisotropic shape effects, as we will 
show. 
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6.2. Upper crirical roughening dimension 
The bulk Hamiltonian in real space is 

H = J d r J d r ' S ( r ) D ( r - r ' ) S ( r ' ) +  J d r h ( r ) S ( r ) .  (41) 

S ( r )  is the spin, h ( ~ )  the random field, and D(r - r ' )  the long- and short-range 

We divide the space into the single direction perpendicular to the wall z, and the 
forces. 

subspace parallel to the wall p: 

r = ( p , r )  r ' = ( p ' , z ' ) .  (42) . :,.- h,..&...--,...- TL1 ... ̂  A-c:-" "..-L.A*:-- ._1 uric i*auciuiaiiu LVJ. we UCLUIC a uuuudiiuu f, anu iwume f = f i p j  io vni)i h 
the z-direction perpendicular to the wall, and assume an interface of zero curvature. 

(43) 

(44) 

S ( r )  = X z  - fb)) 
2 > f(p) * s = 1 z < f( p )  =r s = -1. 

S ( r )  behaves like a step function with a boundary f (p ) .  We make the assumption 
that with no roughening, i.e. f = 0, we have an interface of zero curvature. Figure 1 
makes this clearer. 

We examine the random field term in (41). It is extremely difficult to derive an 
'exact expression for the random field term in terms of the roughness f, so we resort 
to an approximation. We define a random rod field as a random field that fluctuates 
along the domain wall, but does not change in the direction perpendicular to the wall. 
In the random rod field case, since the field is uniform perpendicular to the wall, it 
is energetically more advantageous for the wall to deviate than for the random field 
case. Thus, if it can be shown that the interface is smooth in the presence of random 
rod fields, it can be concluded that the interface is smooth in the presence of random 
fields. 

We define the mean-squared - interfacial fluctuation, averaged over random fields 
and thermally, to be (f2). Following Nattermann [6] and using the random rod field 
approximation, the following inequality is obtained 
- 
o"2 < log L L 

... L..-.. T :̂ .I.̂ A:.---":-" ^C.I.^ ... "I, 
WIIGIG A. w LUG iuicai U I I I I C I ~ L U U  VI uic wau. 

At three dimensions, we can expect the roughness of the domain walls to diverge 
at most logarithmically with the length scale of the system. We thus arrive at the 
main result of this subsection, d, < 3, for structural phase transitions with random 
strains. 

6.3. Anirotropic shape effects 

In the previous subsection, we showed that the upper critical roughening dimension 
d ,  6 3. In this subsection, we will show that the upper critical roughening dimension 
alone is not enough to determine that the domain walls will smooth, even at three 
dimensions greater than or equal to d,. We now investigate the role of the shapes 
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Pancake 
ellipsoid 

Approximate 

v 

CO," Flgwr 6. Flat interface approximation of domain wall. 
The ellipsoidal domain is approximated by a disc. The 
face of the disc is assumed flat. 

4L 

of domains. The anisotropic nature of our long-range forces cause the domains to 
have an ellipsoidal shape before roughening (see figures 1 and 6). The previous 
approximation, where a flat interface was assumed and the edge of the domain 
neglected, works well for extremely large domains (see figure 6). In the regime of 
small domains, the edge can no longer be neglected and curvature effects have to be 
taken into account. We will show that this small domain regime is intimately tied up 
with the dynamics and metastability of the system, indeed is crucial in determining 
the wall roughness and hence the metastability and dynamics. 

We divide the domain wall into two aspects-the 'broad' and the 'narrow' (see 
figure 7). We make the approximation that the broad aspect has a single radius of 
curvature RI (see figure 8), and that the namw aspect has lwo radii of CUWaNre- 
R, and R: (see figure 8). 

Broad 

Flgvre 8. Domain with cross sections and radii of 
cwature. 

Flgure 7. Side cross section of domain. 
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When a random field system is quickly quenched from above T, to low tempera- 
tures, domains of various length scales L form. Some will shrink to nothing, others 
may take a much longer (possibly infinite) time to shrink In the latter case the 
domain is said to be metastable. The rate at which the domains shrink is determined 
by the energetics of the domain walls. Energy considerations cause the domain wall 
to roughen, creating bumps w( L )  E dm of various length scales L. A bump 
w ( L )  is created to take advantage of a local region where a majority of the random 
fields are aligned with the order parameter. The random field energy gained from 
such a bump is [ A w ( L ) A ( L ) ] ” * ;  statisticaliy it scales as the square root of the 
volume w( L ) A (  L )  created by the bump. A( L )  is defined as the (d-  1)dimensional 
area over which the bump occurs. For a description of how domains form bumps to 
minimize their energy in random fields, see [2, U)]. 

These bumps create an energy barrier E [ w ( L ) ,  L] (see figures 10(a) and lO(6)). 
The very presence of these bumps w ( L )  is responsible for the metastable energy 
barriers E [ w ( L ) ,  L ]  which in turn is responsible for the very long relaxation times 
of random field systems. If w( L) = 0 for all length scales L, then E = 0 and 
there would be no energy barriers. When there are no bumps U( L )  on any length 
scale L,  there is no longer any random field energy [ A W ( L ) A ( L ) ] ” ~  to be gained, 
and then random fields become irrelevant, and the dynamics is essentially that of the 
pure system. 

npum 9. Bump on domain wall with radius of curfalure R. 

Flpm 10. (a) n o  metastable bump configurations, A and B.  ( b )  Energy barrier 
separating bump mnfigurations A and E .  

Of the various treatments of the dynamics of the random field problem [l-51, the 
most complete are those of Andelman and Joanny [2], and Nattermann and Vilfan [3]. 
Both are essentially equivalent. We choose to adopt the approach of the former. 
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We have the equation of the energy barrier [2] 

E[w(L) ,L]  = -uA(L)  t [AA(L)w]“’ (46) 

U is the surface tension, A ( L )  the ( d  - 1)-dimensional area over which the bump 
occurs, L the length scale, and R the radius of curvature. L 6 R. The first term on 
the right-hand side of this equation is the interfacial energy for the increase in domain 
wall surface area due to the bump w. The second term is the Laplace contribution 
for a curved interface of radius R. The third term is the random field energy term. 

There is a minimal radius of curvature R, such that for domains with R < R,, 
w ( L )  = 0 for all L 6 R. In that case E = 0, and surface tension causes the 
domain to collapse. R, depends on the random field strength and is independent of 
temperature. This is the dynamical picture presented hy Bruinsma and Aeppli 111. 

At higher temperatures but below Tc, the thermal energy - 0 ( k , T )  enables 
the domain to overcome the metastable barriers E [ w ( L ) , L ]  whenever E < k,T. 
Thus the domain shrinks by thermal hopping even if the surface tension is insufficient 
to overcome energy barriers. R, is the ‘thermal’ minimal radius which depends on 
temperature and grows logarithmically: 

t 
&( 1 )  = R, In ; . (47) 

This is the dynamical picture presented by Villain 141. 
Andelman and Joanny [2] incorporated the two effects, and defined a minimal 

radius Rmi, 

R A t )  = max[R,, %(t)l.  (48) 

At any time 1,  all domains have radii of curvature that are no smaller than the 
minimal radius Rmin(l) .  We have two radii-a ‘surface tension’ radius R, and a 
thermal radius h(1). We proceed to calculate R,, R, for our system. Since we 
are seeking to calculate minimal radii, we assume that R is small; w / R >> (w / L)’ . 
We will study the two aspects-‘broad‘ and ‘narrow’-of the domain walls separately, 
beginning with the broad (see figure 7). Andelman and Joanny (21 were dealing with 
an isotropic system; as such for their work the area A( L )  = Ld-’.  We are dealing 
with a system that scales anisotropically. For the broad aspect of our domain wall, 
Abrod(L) = LZ(d- ’ )  = L4 for d = 3, and R = R,. 

We calculate the ‘surface tension’ radius RI, for the broad aspect, following 
the method presented in Andelman and Joanny [2] .  We found that R,, = 00 at 
d = 3 6 d,. Hence we have shown that even taking curvature effects into account, 
the broad aspect is smooth and will not contribute to the metastability at three 
dimensions. 

We now examine the narrow aspect of the domain wall. The anisotropic scaling 
in this part of the domain wall is not unlike the dipolar problem (cf [6] ) .  The narrow 
aspect involves a short radius R, and a long radius R:; the dipolar RFIM domain is 
an ellipsoid with a short principal radius R and a long principal R3/’ [6] .  In both the 
narrow aspect of our problem and the dipolar RFIM, there are 2 different length scales 
involved namely L and L2; A( L )  = A,,,,, ( L )  = L z L  = L3. To take into account 
the different length scales and radii, we have to modify the methods of Andelman 
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and Joanny 121. One must keep in mind that Andelman and JOaMy (21 applied their 
calculations to an isotropic system, and we are calculating an anisotropic system. 

To find R,,, we go through the same method as for the broad aspect, except that 
the radii and length scales are altered. We found for the 'surface tension' radius of 
the narrow aspect 

Thus we do find metastability for the narrow aspect even though there is none for 
the broad aspect. As such it is crucial not to neglect the narrow aspect in studying 
the metastability and dynamics of our model it is the minimal radius of the narrow 
aspect R,, that determines the minimal volume of the domain. Inspecting (46), we 
see that the smallest radius R gives the largest energy E .  

The minimal volume of the domain is V,  - Rj,. By comparison, for a three- 
dimensional short-range RFIM, Andelman and Joanny [2] predicted the minimal radius 
R, = a f [ ( 2 ~ ) ~ / A ]  and the minimal volume V,  = RZ. For our model, even though 
anisotropy does not remove metastability, the minimal volume of the domains is 
increased. 

We now analyse the thermal minimal radius RZT( t )  for the narrow aspect. The 
thermal minimal radius RZT( t )  grows logarithmically in time: R2T(t) = R, ln ( t /T) .  
We proceed to calculate R,. We maximize E [ w ,  L] by differentiating E with respect 
to w: 

-= aE 0 aw 
The maximum energy obtained is E,,, = A R i / [ 4 u ( R  + l ) ] .  For small domains, 

E,,,[w, L]  < k,T for all length scales L,  and thermal fluctuations will overcome 
the energy barriers to collapse the domain. We define the minimal thermal radius 
coefficient R, to be such that 

= k,T A R,Z E,,, = 
4u( R, + 1)  

from which we obtain 

R , ( T , A )  = - ~ u ~ B T  +2/(F)z +- uk,T 
A A 

Note that R, depends on temperature and random field strength. By comparison, 
--" R .  = - d n h - T / / \  . - . " ~ - ,  - fnr the short-range RJ!M !2j: For our mode!, the thermal volume 
VT(t) - G(t), whereas for the short-range RFIM, V ( 1 )  - R + ( t ) .  Not only is the 
thermal minimal volume enlarged, but the rate of growth, although still logarithmic, 
has its power increased by 2. 

To sum up the dynamical picture, anisotropic mode softening does not eliminate 
metastability or logarithmic relaxation times, but increases the minimal volume of the 
metastable domains and their growth rate. This is owing to the anisotropic domain 
shape. For short-range RFIM, the volume grows in time as (In t )3 ,  but for our model 
it grows as (In t ) 6 .  In three dimensions, the broad aspect of the domain wall is always 
smooth, but the narrow aspect is locally rough, and it is the roughness of the narrow 
aspect that determines the metastable and dynamical behaviour of our model. 
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7. Conclusion 

We have studied a random field model with long-range anisotropic forces. For the cor- 
responding pure model, the effects of these long-range forces have been studied [7]. 
The short-range RFIM, the dipolar RFIM and our random field model represent three 
distinct random field models, each with its distinct universality class, fved points, 
upper critical dimensions and crassover behaviour. 

Upper &d dimension d,. Short-range RFIM = 6; dipolar RFIM = 5; our random 
strain model = 4; pure short-range Ising model = 4. 

Upper critical roughening dimension d,. Short-range REM = 5; dipolar RFIM = 4; 
ow random strain model = 3; pure short-range king model = 3. 

Crossover behavwur. Our model exhibited the most complex crossover behaviour of 
the three random field models, since it incorporates the most additional long-range 
forces. The fixed points encountered in the crossover behaviour of our model include 
the short-range RFIM and dipolar RFIM fixed points. 

Domain wall roughness. In isotropic models if the hu!k dimensi~n is !BS than er 
equal to the upper critical roughening dimension, the domain wall will be smooth on 
the length scale of the domain size. In our anisotropic model, this is not the case. 
Predicting the upper critical roughening dimension does not guarantee smoothness 
in the domain walls of anisotropic models. We show how the domain wall is still 
rough in the narrow aspect even at three dimensions which is the upper critical 
roughening dimension of our model. The persistence of domain wall roughness in 
ow model accounts for the persistence of metastable effects and long slowing down 
times in our random field model. The fact that ow random field model and the 
short-range random field model exhibit the same qualitative dynamical behaviour 
should not obscure the different physics underlying the two models. The short- 
range RFIM is an isotropic system; if the dimension is high enough the domain walls 
will be smooth, Likewise for the pure Ising model. However, ours is an anisotropic 

shape effects must be accounted for. Although anisotropic long-range forces do not 
eliminate metastability and long slowing down times in the dynamics of our model, 
one minor effect is to increase the minimum metastable domain size and the power 
of the logarithmic slowing down rate. 

~ ~ i e m l  dhem.ionriiiy done ij noi en0up;l io guaraniee s"~n-misoiropic 

C&& ewe&.  w p  "e ta !hp are ??ncertdn re-ss!! af !hh wnrk. !n spite af !hp 
lack of rigorous theoretical justification, we have applied the renormalization group 
to extract static critical exponents from our system at three dimensions. From our 
e-expansion, we have obtained critical exponents which to 0 (e), are the same as for 
a pure Ising model, with both models at three dimensions. The pure 3D Ising model 
has 7 = 1.25, and we predict for our model 7 = 1.2. We state these results of our RG 
calculations in spite of the theoretical uncertainty still surrounding the validity of the 
RG for random field models. We do so because we regard these results as plausible, 
and also because ours is a random field model on which experimentalists can test the 
validity of the RG at three dimensions. This is not so for the short-range RFIM or the 
dipolar RFIM of Nattermann [6]. We encourage experimentalists and computer hacks 
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to come up with accurate results that will either confirm or contradict our results. 
Either way, new light would have been shed on random field models. 

To recap the question in the introduction, is our model more like a random field 
model or a pure model? We may answer that it is more like a random field model, 
although the truth is more subtle and less straightfonuard. 

Ours is a random field model which at three dimensions is just one dimension 
below the upper critical dimension, whereas most other random field models, at three 
dimensions, are well below their upper critical dimensions. Hence om is a random 
field model on which experiments can be done to study the behaviour of random 
field models close to the upper critical dimension. Since this model has experimental 
applicability, we have included in our paper details of experimental interest. 

Using Cowley [7] as a guide, one physical example of our model is 
Dy(AssV,-,)04, on which Graham, Taylor and co-workers [13] performed exper- 
iments. They measured the critical exponent y to be 1.6 - 1.8, which is much higher 
than 1.2 predicted by us. We offer no rigorous proof that our value is the correct 
one, and no rigorous explanation for the discrepancy. One possible explanation is 
that perhaps in Dy(As,V,-,O,), the random fields are much stronger than the elas- 
tic forces, so the crossover to the pseudo-Ising fixed p i n t  is not discernible. Graham 
er a1 (131 (1991) stated that the pure parent crystal DyVO, is not a good mean-field 
system. If that is so, the predictions of Cowley [7] and our work would not be 
applicable to this substance and its impure counterpart. We advise experimentalists 
to find a crystal whose elastic forces is strong enough to induce a crossover to the 
pseudo-king fmed p i n t  even in the presence of random fields. Experiments can be 
performed on physical examples of our model to measure domain wall roughness, 
and to analyse the dynamical behaviour. If possible it is hoped that experiments can 
correlate domain wall smoothnesshoughness with the dynamical behaviour. One such 
experknent has been performed by Taylor er al (131 on Dy(As,V,-,)O,, a crystal 
which is a physical realization of the random field model studied in this paper. They 
observed the existence of metastable domains. 

To our knowledge, ours is the first theoretical treatment of structural phase 
transitions of mixed crystals that goes beyond mean-field theory. Mayer and 
Cowley [22] used mean-field theory to analyse and predict the critical behaviour 
of (KCN),(KBr),-,, which by symmetrical considerations does not correspond to 
our model. Kasten et a1 [23] used a modified mean-field theory to describe 
(Tm,Tb,-,)AsO, and (Tm,'Ib,-,)VO,. Gehring [24] used molecular field the- 
ory to describe (Tm,Lu,-,)VO,. The Hamiltonians describing these substances are 
not the same as our Hamiltonian, although they have a random field coupling to the 
order parameter. Both Kasten er al [23] and Gehring er al 124) were able to account 
for the experimental data of the specific heat fairly well with their mean-field analysis. 
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